

FC6P01 Project

Final Report

Interactive glove controller

1

Abstract

In this report it will closely analyse each step of the development process of a

Glove Interactive Controller.

My aim was to build a wearable glove controller for computer/user interaction trough

hand tilting and fingers movement. The best solution that I could think of is to have a

glove with several sensors attached. All these sensors would collect data (such as

inclination, movements etc.) and send this data to the computer through any kind

(might be wireless -bluet hoot/Wi-Fi- or wired up -I2C-) of connection. On the

computer side of things, my aim was to build a C++ wrapper library, which makes it

easier for anyone wanting to use the device integrated in any sort of graphic

application. The aim of the project is to give the user a new kind of experience by

controlling something virtual with their hands.

2

Contents

Declaration ... Error! Bookmark not defined.

Submission Information for Students Error! Bookmark not defined.

Abstract .. 1

Contents ... 2

1. Introduction .. 4

1.1 Subject of the report ... 4

1.2 Structure of the report .. 5

2. Background .. 7

3. Design .. 12

3.1 Hardware .. 13

3.1.1 Microbit... 13

3.1.2 Sensors .. 14

3.2 Software ... 15

3.2.1 Generic Architecture Design ... 15

3

3.2.2 Python Script ... 17

3.2.3 C++ End Interface ... 19

4. Implementation .. 22

4.1 Software ... 22

4.1.1 Microbit... 22

4.1.2 Python Script ... 24

4.2.3 C++ End Interface ... 27

4.2 Hardware .. 35

5. Testing & Conclusions ... 38

7. References .. 41

4

1. Introduction

1.1 Subject of the report

This project consists in a wearable glove controller for computer/user

interaction through hand tilting and fingers movement.

The glove has several sensors attached to it. All these sensors collect data (such as

inclination, movements and finger flexing) and send it to the computer through a USB

connection.

The artefact makes use of a micro controller, which has both some built-in sensors

and some GPIO (General Purpose Input Output), which allow the external flexing

sensor to be attached.

The final product is intended for the use of developers and creators.

To make it easier for people to integrate the device in any sort of graphic application,

the controller comes with a library for developers to be downloaded from my GitHub

account, which I wrote and packaged personally. The latter allows a quick and easy

access to the Glove controller and its sensors.

The project stems from the recent and increasing spread of Virtual /

Augmented reality and human-machine interaction. Possibly more and more people

will start considering working with these features.

The point of the project is not to take advantage of the market’s increasing demand of

these types of controllers, but to support the developer community with an affordable

and 100% open source device to start with.

5

From this comes the idea of not simply making the physical product available, but

also to provide a quicker setup that makes it less time consuming to start developing.

Accordingly, this report aims to provide detailed explanations on how the

project development is being conducted. The following paragraphs will explore the

preliminary researches that have been conducted before the project’s development and

will provide a framework for the layout of the product and the design pattern followed

to achieve its final form.

Fig 0: My Instructable page, where I will publish the project

1.2 Structure of the report

The structure of the report will follow and explain each step of the project’s

development, starting from the choices taken before even beginning the realisation of

it up to the final details of how it has all come together.

For what concerns the background research, the related section will mostly

focus on the books and sources encompassed during this project. Accordingly, they

proved to be essential for both the construction of the device when it came to choose

6

specific components over others, as well as for the choice of development tools.

Once this will have been fully explained, the report continues with the explication of

the project design.

The description of the design entails everything, from the layout to the circuit

structure and organisation, as well as the design of the actual interface used to access

the glove sensors.

After the right selection of design, it will be made clear why and how it all

came together to the final product, providing reasonable explanations for why one

design would be chosen over another, and giving proof that the decision taken does

result to be the most suitable and efficient one.

Finally, the conclusions on the project will be mapped out and will include

after-built thoughts of the overall development and considerations of further possible

implementations.

7

2. Background

Thanks to my involvement in the “BBC Microbit” foundation last year, my

interest towards the world of micro controllers strongly increased, and lead me to

study and explore some of the objects that can be realised with such small pieces of

electronics.

Microcontrollers are a powerful tool for makers, as they give the chance to

control electronics modules by uploading some code onto the board. In a nutshell a

Microcontroller is a small computer, so it does have one or more processors cores

along with memory and programmable input/output peripherals. When the program is

uploaded onto the board it stays there, saved in memory.

There are several microcontrollers on the market, but the features required for

the device are basic: neither a large amount of flash memory nor a powerful processor

is, in fact, necessary. On the top of this, because there is no need for the device to

connect to the Internet I discarded all those micro controllers, which are famous for

their Internet capabilities and system stability (Raspberry Pi, Arduino Leonardo, Intel

Quark).

This left me with many choices, though the familiarity I had with the Microbit device

led me to choose it among other varieties.

The BBC launched this product in the late 2012, but additional partners joined

in along the way (including ARM, Microsoft, Samsung).

Every piece of this board is 100% accessible. Accordingly, all companies involved in

this project are great supporters of the open source/freeware community.

8

On the top of this, this micro controller has been given to almost every year-7-student

in England and Wales, year-8-student in Northern Ireland, and S1 student in

Scotland1.

Although it is meant to be a teaching device to be approached by beginners, its

possibilities of use extend beyond these basic values.

While surfing the web in search of ideas and inspiration on what to do, a website2

captured my attention. In fact, this provides plenty of available resources, and for each

topic a physical book is available for sale.

 My interest mostly focused on “Microbit: IoT in C” book, this goes through a

detailed explanation on how to set up an offline programming environment to upload

C++ code onto the device.

Additionally, it tells the user about serial communications, as well as GPIO handling

and redirecting. This book has been my main source of inspiration for the realisation

of this project.

As for what concerns the programming techniques involved, I learnt most of

them along my studies, consulting great website tutorials as well as books like

“Games Programming Patterns” 3 (where I first learnt about singleton and other OOP

patterns). In fact, these projects present more than one technique inspired by the latter,

though developed and realised by myself.

1 http://www.bbc.co.uk/mediacentre/latestnews/2016/bbc-micro-bit-schools-launch
2 https://iot-programmer.com/
3 OOP patterns (http://gameprogrammingpatterns.com/)

9

As well as the above, computer graphics studies helped a lot in topics like

memory management (e.g. pointers, references, dynamic memory handling) and data

parsing (e.g. buffers, array programming).

Dynamic memory allocation allows the user to manage, resize and reserve memory at

runtime, by telling the compiler to keep a certain memory capacity unallocated so that

data can be held within it. There are a few articles about C 4 and C++ 5 dynamic

memory handling, these websites cover many interesting topics in details and some of

the work done in the project is based on these. Especially when it came to integrate

two different programming languages together, as this required a lot of transforming

(“casting”) objects back and forth from a language to another (in the project case C++

and Python).

The methodologies involved will be explained in greater details later on as well as

relative approach to them and eventual issues/solutions.

For integrating Python with C++ there is one main official documentation that

despite being old is still up to date6. I

have been studying and documenting

mainly from this source as there is no

other one available.

4 (https://www.includehelp.com/c-programs/dynamic-memory-allocation-examples.aspx)
5 (https://www.tutorialspoint.com/cplusplus/cpp_dynamic_memory.htm)
6 (https://docs.python.org/2/extending/extending.html)

Figure 1: The nintendo power glove
(image source)

10

Additionally, the founts of inspiration were drawn from a few glove

controllers available on the market.

The first one is the Nintendo Power Glove7. Considering that it was developed in the

late 80’s, this device is a pioneer of the augmented reality. Unfortunately, the project

failed miserably as the controller ended up being really uncomfortable and difficult to

use (Figure 1).

Nowadays there are different kinds of gloves controller but the most famous and

probably the most advanced one is the Manus VR8 . The latter took the glove

controllers market to a whole new level, including haptic feedback and water-resistant

casing for the glove to be washed if needed.

The Manus VR device (Figure 2) comes with a developer version available on order

in two versions: Developer and Professional, costing respectively 1999 and 4999

Euros. It comes with a full Software Developer Kit as well as different plugins for

various game engines.

The device is mainly designed to be

used in VR applications.

The following Glove project is though more based on a DIY concept, as I tried

to use the smallest number of sensors while succeeding in still obtaining the best

results.

7 (https://en.wikipedia.org/wiki/Power_Glove)

Figure 2: Manus VR (image source)

11

Most of DIY projects9 available on the web that aim to build a glove, make use of an

Arduino for power reason (Arduino board can drive up to 5V) – though I preferred the

small size of the Microbit over the compactness and solved the power issue adding an

external power source.

I have not found anyone aiming to build a controller for computer applications; most

of the tutorial is concerned with developing a glove that drives a robotic arm or hand

(using servos and motors).

Everything from the Glove controller interface to the computer has been purely built

and ideated by me, and I have not based the architecture or the design on anything but

my personal intellectual property.

8 (https://manus-vr.com/#product-anchor)
9 (https://celebratelife24x7.wordpress.com/2014/11/17/arduino-project-5robotic-hand/)

12

3. Design

On a purely aesthetical level, the glove is thought

to look as an average black glove and to have all the

circuit cables, the batteries and the micro controller

hidden and sewed underneath a “cover layer”.

The two layers are sewed in together.

Each flex sensor has a dedicated pocket on the

corresponding finger, in which they are fit in. The

battery, the Microbit, and the recharge module are

covered from the external layer, as well as being

sewed into the glove textile.

The glove is thought to be as minimalistic as possible.

Two micro USB ports (one for charging and the other one for connecting the device to

the computer) are placed on the two diametrically opposed sides of the wrist. The

controller makes use of the 5x5 led matrix from the Microbit to display notifications

to the user.

The Glove has originally been created as a game controller, but it can be applied to

any form of C++ application. It is then up to the developer who is integrating the

controller to choose what to do with the retrieved values from the sensors.

In the next paragraphs, I will explain the technical part covering the glove’s

design system, starting from the Microbit side, the Python interface, up to the final

end library (written in C++).

For each I will explain the structure that came out at the end of my research. To

Figure 3: The planned assembly
of components

13

maintain it all more comprised, I divided it into two categories (Software and

Hardware) with eventual subcategories when needed.

3.1 Hardware

3.1.1 Microbit

The Microbit makes use of an ARM processor (eg. same as an Iphone) and

several built-in sensors such as the followings:

an accelerometer (which returns values accordingly to the oscillation -roll and pitch

rot- of the device);

a digital compass;

a low energy Bluetooth module;

a radio antenna (mostly used for Bluetooth from the API’s);

5 main pins (3 for digital readings, one for a 3.3V current input (vcc / +) and one for

ground(GND / -));

two built in buttons;

a 5x5 LED’s matrix;

and both a Power and a micro USB ports.

As shown in figure 3 (above page), a breakout board is necessary in order to attach

external sensors to it. The Microbit foundation released different programming

environment and different languages the device can be instructed with. The problem

with most of these is that the interface simplicity and the visual side are preferred over

the actual speed of the code. To reduce the number of layers within the interface and

the hardware, it is better not to use a block editor - not Python nor JavaScript. Instead,

it is best to use C++ programming language. The reason is that C/C++ is about as fast

14

as you can get on any machine. It might be possible to get some more speed out of an

assembly language version of a program, but it would only be a few percent. Using

C/C++ lets programs run tens of times faster.10

As the Microbit data access layer is built on the top of ARM mbed, it either needs an

offline build system -such as yotta - for offline development or, alternatively, a C++

code should be compiled in .hex files - using the mbed online compiler11.

3.1.2 Sensors

Flex sensors are analogic resistors. They work as variable analogic voltage

dividers. Inside the flex sensor are carbon resistive elements within a thin flexible

substrate. When the substrate is bent the sensor produces a resistance output relative

to the bend radius. With a typical flex sensor, a flex of 0 degrees will give 10K

resistance with a flex of 90 will give 30-40 K ohms.

The 6V battery pack is necessary as the Microbit can only drive 3.3 volt out of the

device and the resistance of the sensors is so low that it couldn’t even be detected (the

tolerated voltage for these kinds of sensors is 5 to 12V).

The batteries are charged through a 1A lithium battery charger module which

is a very useful module for DIY projects as it charges through a micro USB cable and

it has one led indicator for battery fully charged (blue), as well as one for when it is

out of charge or charging (red). This module is extremely cheap and intuitive. It only

has 4 pins (two are optional as they would substitute the micro USB voltage in).

Once battery is fully charged there is no need to unplug the module itself as it will

directly drive current to the device. If the input voltage is too high, the current will be

10 https://www.quora.com/Which-is-better-for-microcontroller-programming-Python-or-C++?share=1

15

less than 1000mA. This is a protection feature: auto-subtract the charging current to

avoid burn/damage the chip.

The Microbit reads data from all sensors to then pass it in one big buffer onto the

serial. Then there is no further action made from the Microbit as the project is thought

in a way that allows only the computer side to access, sort and label the numbers

parsed in it.

3.2 Software

Passing data back and forth between two machines is a procedure that can be

achieved in many ways (i.e. wiring up a serial connection, using two antennas with

any communication protocol -e.g. Bluetooth-, having something connected to the

internet and pass everything through a server). I do believe that there is no right or

wrong way to do this, but there might be a more or less efficient one.

3.2.1 Generic Architecture Design

To make a good comparison and effectively show the efficiency of the

structure planned for the project it is worth comparing it to some already known data

flow system. For instance, the Model View

Controller (MVC) is an architectural pattern (or

design) which aims to separate the

application/framework in three logic

components: Model, View and Controllers

(Figure 4). For each of these, a certain task and

11 (https://os.mbed.com/compiler/)

Figure 4: An example of MVC system
(image source)

16

specific development aspect of the application itself is assigned.

“MVC is one of the most frequently used industry-standard web development

framework to create scalable and extensible projects.” 12

Without going into details of an MVC system, but just knowing that this is an

affirmed data flow system, it is possible to compare it to the one structured for the

project in order to highlight and explain differences and similarities.

Figure 5: The actual project’s data flow-diagram

First thing that comes evident from the comparison of the diagrammatic

representation of the two systems is how the MVC system has two different

bidirectional nodes (two points where the data is both received and sent). This is

because, in the MVC system, the user is the ending point of the chain, while in my

project the final use of the data is unknown, which means it all merges into a “user

control” (rather than a user).

To stick to the example, the “View” component of an MVC system is not considered

in the project, in fact the data of the Glove Controller have none of what is commonly

called “Graphical (User) Interface”, so no representation on the screen.

12 (https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm)

17

The Microbit and the Python interface can be considered the Application, which has

all the data stored and makes it available to a Model (the C++ interface), the

exchanging node is actually between these two.

The bidirectionality results from the Python making the data accessible but not

addressing any specific component as it leaves data pending in the memory. Here

comes in the C++ side, which aims for that place in memory, accesses the data and

requires the Python script to start updating.

Finally, it will retrieve all the required data and expose it (as to make it accessible)

through some getter functions (simple and specific requests) to anyone who is willing

to implement the glove to his own application.

If I were to take both the final graphic application within which the glove controller is

used and the user into consideration, it would then end up looking like the one in

figure. 6.

Figure 6: Extended system flow

3.2.2 Python Script

The organization of the Python script is really important because it will

exclusively work as a bridge. Accordingly it will need to run independently both from

the Microbit and from the C++ interface.

18

To start working on the application as quickly as possible, it seemed logic to use a

Serial library13 to do the basic serial operations and encapsulate it in a class called

Serializer.

The choice of which library should be used is an important one, as most of them are

products of hard work so usually very well optimized.

The Serializer makes use of the singleton design pattern. It is nothing more than a

class with the ability of replicating itself in the constructor, so that every time it needs

to be called, it parses itself as a referenced copy without

taking any extra memory.

There are many debates around this topic in that it is

thought to be a bad way to deal with data, and it goes

against Object Oriented Programming logic by making

every variable public and accessible from the outside.

The serializer is declared as a normal Python class but

“decorated” as a singleton. The two designs together

result in a handy and reusable serializer that only needs

instantiation once. The actual techniques will be shown

in the Implementation section, further on in this report.

Any exchanged data between the components of

the entire architecture is parsed with a specified token

next to it, in the same way an obj file is written (figure.

7).

Any .obj model file, if opened, is just a sequence of numbers preceded from a token (a

13 https://pythonhosted.org/pyserial/

Figure 7: Example of a
cube obj, (image source)

19

letter) that specifies what the following data is going to represent (v = vertices, vn =

normal etc.).

In the same way the data parsed between the interfaces of the project is recognised

using this methodology. This process is quick and efficient, and it does not require the

program to compute extremely complexed calculations in order to evaluate what data

type to expect for each line parsed in, as this can explicitly be declared via that token.

3.2.3 C++ End Interface

Having the final side written in C++ is quite a convenient thing as most of the

games nowadays are developed in either C++ or C#.

Anyway, following the logic planned so far, if for any reason one needs to retrieve

those values in R or JavaScript, the developer will still be able to just remove the last

layer and use the Python script instead. Of course, given user will have to manually

retrieve them and put them in the right order, but that’s a whole other story.

 Python comes with a C++ library, through which is possible to call the interpreter,

run a script and even call functions inside the script.

The latter library is quite old style and the access to a Python object like a method (or

even just a variable) is required each time. The Python object, in turn, needs to be

casted into a C++ object. This (as previously mentioned) is a very sensitive procedure

as Python is a very dynamic language, whereas C++ is not.

Because the C++ needs to access the Python scripts and it needs to ask for the

variable for each single frame, it will also need to wait for the script to answer back.

This is a common problem when it comes to synchronizing two entities

communicating with one another (e.g. networking: side/client).

20

Multithreading is only one of the solutions to this problem but (because it is mostly

supported by all machines and because there is an official C++ library to use threads)

it seemed to be the most suitable for the glove controller system.

Multithreading is the ability of a CPU (Central Processing Unit) to execute

multiple processes concurrently.

“The multithreading paradigm has become more popular as efforts to further

exploit instruction-level parallelism have stalled since the late 1990s. […] Thus,

techniques that improve the throughput of all tasks result in overall performance

gains”14.

In the end user interface, threads have initially thought to be contained in a resizable

container. This last implementation of the design resulted in some problems, which

led me to go back to it and create a much simpler and clearer design of the thread

handling.

The first design was thought so that every time a thread is needed to do something, it

can be created, initialized, and assigned to a function and detached from the main

program flow.

This resulted in errors when the program was to delete the thread pointers from the

container. More specifically:

Once it has been created, no pointer will have a value until it is initialized with the

new keyword: to each new keyword a delete needs to match. Because C++ does not

have a garbage collector, all the memory that has not been manually erased -once

unnecessary- will remain there.

This usually means that new instantiated objects won’t be able to take that single

14 (https://en.wikipedia.org/wiki/Multithreading_(computer_architecture))

21

place, and will instead be stored into the next available one.

After a certain number of program iterations (depending on the machine hard memory

specifications) the whole executable will eventually crash.

When I created, initialized and pushed a thread’s pointer into the container, this was

fine. Though when it came to delete that pointer it was too hard to keep track of both

emptying the array slot containing the thread as well as the thread’s pointer.

The main idea quickly changed shape into something simpler: just two threads are

created from the start and any extra operation is kept within the thread from which has

been required.

In addition to the threads that will handle the communication to the Python,

there is the procedure of opening the Python interpreter, initialise it and shut it down

once it is done, this should not require a lot of coding if achieved properly.

22

4. Implementation

Figure 8: three different states of assembling

4.1 Software

4.1.1 Microbit

As mentioned above, the Microbit has been instructed in C++ for speed’s

purpose. The whole set up of the environment required some time to be implemented.

The C++ Microbit runtime has been developed by Lancaster University and

contains device drivers for the device and gives access to a suit of mechanisms to

make programming the Microbit easier.

Because the whole is built on top of ARM mbed, it makes use of yotta to link all the

building dependencies. This means fetching the right components -compiler (Gcc in

the project case), libraries and eventual toolchains- and instruct them to compile the

C++ code to a hexadecimal file (readable by the device).

23

Given that yotta needs to link to the Python interpreter too, and given that I use Python

for external development and different applications, it has been necessary to build a

virtual environment and install only the libraries needed by the built system.

To make the development faster, I wrote some bash script to activate the virtual

environment, build the C++ and upload it, all in one go. The procedure it looks like

this anyway:

C:\yotta-venv\Scripts\activate => Activate the virtual environment

cd Path\To\Program\ => Access the directory of the code to be compiled

yotta build => Build it

cp \build\bbc-microbit-classic-gcc\source\program name-combined.hex F:\ => Copy

it to the F drive (the Microbit).

Once this set up was done, making it work, change the code, and upload it

onto the Microbit became way easier.

The program running on the device is simple and only sees three main functions doing

all the job: initialise, loop and release.

Because the only library that can be included in the project is the Microbit official one

(trough which is possible to instruct the device and access its pins and sensor), I

needed to write a map function myself. The latter takes two variable and maps them to

another specified range (for the project example it takes the returned analogic read

from the sensors and maps it between 0 and 90 degrees of bending):

long map(long x, long in_min, long in_max, long out_min, long out_max) {
 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;

}

24

The ‘initialise’ and ‘release’ functions respectively initialise and shut down the

serial communication. The loop on the other hand is where the actual variables get

sent using the tokenisation method mentioned before.

This sends a “BEGIN” before sending the set of variables (tilting x, tilting y, 5 fingers

flex value and two buttons pressed Boolean value). Before and after each variable a

“b” and an “e” are sent so the final interface knows that it will need to loop in between

the two finds of the “BEGIN” and it will look variables only between a “b” and an

“e”.

The final implementation:

uBit.serial.send("BEGIN");

uBit.serial.send(" \n");
uBit.serial.send("b");
uBit.serial.send(uBit.accelerometer.getPitch());
uBit.serial.send("e");

...

uBit.serial.send(" \n");
uBit.serial.send("b");
uBit.serial.send(angles[1]);
uBit.serial.send("e");

4.1.2 Python Script

For what concerns the Python serial interface, on the other hand, a few more

functions have been implemented.

In this script is worth looking at how a singleton is implemented and how in this case

it decorates the serializer too.

def singleton(cls, *args, **kw):
 instances = {} #create an empty array
 def _singleton(): # define a temporary singleton instance

#if the parsed class (cls) has not already being assign a singleton

25

if cls not in instances:
 instances[cls] = cls(*args, **kw) #create for it a new copy of itself

 return instances[cls] #and return it
 return _singleton
#above if the parsed class has already been copied reurn it as it is

#the following line is a decorator in Python
#this will make the following class a singleton
@singleton
class MySerializer:
 def __init__(self, _baudrate=9600, _timeout=100):
 self._ser = serial.Serial()
 self._ser.baudrate = _baudrate
 self._ser.timeout = _timeout

The above text shows a comment for each line that should explain what each of them

does.

The class serializer is only shown with the constructor (__init__) but it does have

many other tools functions for opening, closing, checking if open and so on.

The actual core of the scripts when ran first requires to know what ports are

available. Consequently, I wrote a check system ports function which scans all the

COM’s and only returns the available ones.

def checkSystemPorts():

 if sys.platform.startswith('win'):
 ports = ['COM%s' % (i + 1) for i in range(256)]
 elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'):
 # this excludes your current terminal "/dev/tty"
 ports = glob.glob('/dev/tty[A-Za-z]*')
 elif sys.platform.startswith('darwin'):
 ports = glob.glob('/dev/tty.*')
 else:
 raise EnvironmentError('Unsupported platform')
 return ports

The above few lines check as well for what operative system the program is running

on. This is not used as a feature now as the system is designed for Windows. Although

it is not possible at the moment to run the project on different OS’s, all the libraries

used (as well as the programming laguages) are platform independent and the whole

26

system has been arranged so that making it completely cross platform on different

Operative Systems would not take too long.

Because the mentioned function returns an array of ports, it is possible to iterate

trough this last and try to connect to each one of them. When one port allows

connection, then the script is going to establish connection, this is achieved in the

‘serial connect’ function.

def Serial_connect(_br):
 ser = MySerializer()
 for port in checkSystemPorts():
 try:
 ser.SetPort(port)
 ser.open()
 return "True"
 except (OSError, serial.SerialException):
 pass

 if not ser.connectionAvailable():
 return "False"

Python has some very helpful features when it comes to error trap, as all the

exceptions thrown can be caught, and accordingly modified afterwards.

For instance, in the above lines, the serial connection happens only if the port is

available. If this is not the case, an exception would be raised, caught by the program

and excepted by doing nothing (“pass”). In case the port is active and can be

connected to, the function will return true. If none of the ports has been found

available it will return false.

Once everything has been initialised and the connection has been safely established, it

is possible to ask the script for the variables, the function to do this is the following.

def GetVars():
 ser = MySerializer()
 checking = 1
 lines = []

 while checking:

27

 lines.append(ser.recv())
 if lines[0] == "BEGIN \n":
 checking = 0
 lines = []

 for value in range(0, VARIABLES_TO_BE_READ):
 lines.append(ser.recv())

 if lines[0] == "SHUTDOWN\n":
 ProgramOn = 0

 if lines[0] == "STOP\n":
 ProgramOn = 0

 return str(lines).strip('[]')

The function initialises an empty array, sets the checking Boolean variable to true and

then starts a loop until it reaches the next “BEGIN” token. This is done to discard all

the values up to the start of the list (“Begin”) and to ensure the synchronicity of the

two parts.

Once the token has been found, for a certain number of times (the same as the number

of variables) it will read a single line, this bunch of lines will contain all the variables

needed. After having stored them all in the previously initialised array it returns the

whole as a list of string.

The above-mentioned functionalities pretty much make the whole script.

4.2.3 C++ End Interface

 Finally, the C++ interface, has a way more complicated implementation as it

needs to manage all the threads as well as handle the communication with the Python

script.

The interface only exposes its public members function, while keeping all the other

belonging objects private and inaccessible from the outside.

First, it is worth looking at the private variables needed to hold the objects the

interface needs:

28

class MyExtension

{

private:
 /*Default path to the Python script*/
 std::string _path;
 /* Create some Python objects that will later be assigned values*/
 PyObject *pName, *pModule, *pDict, *pFunc, *pArgs, *pValue;

The series of Python object (this type of object is built in the Python.h library for C++)

will respectively contain: the path to the Python file, external modules to be imported

in the script, dictionary (container) holding eventual variables, function names with its

arguments and a simple Python value which can be used to temporarily store any data.

Many other private members hold: all the sensors value, Boolean for connection

established, a tool function to convert string to numbers and some thread functions

such as connect, close and so on.

/*The two main threads*/
std::thread * Connecting_thread;
std::thread * Updating_thread;

/*Threads function*/
void Connect();
void UpdateVariablesFromSerial();

/*Function for shutting everything down*/
void SerialClose();

/*Private Tool Function*/
float StringToNumber(std::string s) {
 int Numb;
 std::stringstream str(s);
 str >> Numb;
 return float(Numb);
}

All the sensible private variables have corresponding getters.

29

In Object orientated programming, when a class needs to expose some

members to the outside, it is a good practice to keep that variable private to the class

and create public functions to get or/and set the variable. In a nutshell, the reason of

this procedure is that in a more complex system (extended with multiple classes and

inheritances between them) the compiler gets confused if everything is public and

accessible from anywhere. If the programmer explicitly declares certain variables or

methods to be only accessible from within a single class, all those won’t be even taken

in consideration when compiled and linked to the external classes.

The following are the remaining sensible variables. Each of them has at least one line

of comment to understand what they are going to hold.

/*Private sensor values*/

float pitch, roll;

/*Private Array of current fingers Flex value*/
float fingers_value[MAX_FINGERS];

/*Private bools for buttons value*/
bool button_A_pressed, button_B_pressed;

/*Private scale and timeout*/
float scale;
float timeout;

/*This static variable is shared between instances of microbit Extension.*/
static bool connected;

/*Time since pairing mode started */
double duration;

The bool “connected” needs the static attribute in the eventuality where more

than one instance of the extension is created.

Static is a C++ keyword, which specifies that the following declared variable is going

to be mutually shared between the instances of a same class. For example, let’s say

that the maker using this library with the attached device needs to divide the pairing

state from the game play.

Though, as the maker will need to create an instance of the extension in both the

30

states, each instantiation will need to know if the connection to the Python script has

already been initialised. This is represented by the connected variable, which is turned

true when both the connections between the Python and the C++, and between the

Python and the Microbit, will be established.

 All the other methods from the extension are public and accessible from the

outside. As shown in Figure 9, when a function from the library is written down, if

hovered with the mouse cursor it will display the respective comment.

Figure 9: The start function description is shown when the mouse is over it

The followings are all the public methods and some getters:

public:

 /*Use this function when you want to start updating variables
 from the serial, ONLY to be called after PairController() */
 void Start();

 /*Use this function when you want to stop updating variables
 from the serial, this will automatically both close the serial
 and destroy the Python interpreter*/
 void Stop();

 /*Contructor with default parameter assigned*/
 MyExtension(const std::string& path);

 /*Deconstructor*/
 ~MyExtension();

/*Function to be called when entering pairing mode, it will look for
connection until when the timeout in SECONDS is reached*/

 void PairController(float _timeout);

31

 /*Enum of fingers for indexing*/
 enum fingers { F_THUMB, F_INDEX, F_MIDDLE, F_RING, F_PINKY };

/******************** INLINE SETTERS AND GETTERS*****************************/

 /*Set Baud rate*/
 inline void SetBaud(long _baud) {
 baud = _baud;
 };

 /*Returns the flex of the specified finger*/
 inline float GetFlex(fingers f) { return fingers_value[f]; };

 /*True if connection established, false otherwise*/

inline bool isConnected() { return connected; };

…etc…

As shown above, when it came to get and handle fingers value, both an array of

“fingers_value “(private) and an enumeration of type fingers have been created. C++

Enumerations are a very effective tool, which allows you to create a new variable and

give it a type name (“fingers” in this case). Each enumerator is constructed with an

enum-list, which is just a list for number to which a string key is associated. This

allows anyone who is willing to access the fingers_value array of floating point

numbers to index it with a clear and understandable key instead of just guessing a

number from 1 to 5. E.G:

microbit->GetFlex(microbit->F_THUMB);

32

 The main interface methods (Connect, UpdateVariablesFromSerial and

SerialClose) are the core of the whole extension, and are hidden behind the public

Pair, Start and Stop methods. The logic is the following:

 Figure 10: Diagrammatic representation of end user interface

When a call to Pair is made, it will be assigned a timeout in seconds as a

parameter. The Pair function will initialise a thread and assign it the Connect function.

From the moment of the call to the next timeout seconds the thread will run

“detached” from the main program flow. It will keep looking for the connection to

happen by waiting for the Python script function “Serial_open” to return true.

33

As soon as this happens the thread will shut itself down and return true, if the timeout

is reached and the thread is still alive, it will break the loop and exit the function

normally (what shown next is not the whole function but only the main bits):

clock_t start;
 duration = 0.0;
 start = clock();

 while (duration < timeout)
 {

 // Call the serial connect function.
 pFunc = PyDict_GetItemString(pDict, "Serial_connect");
 ...
 try
 {
 std::string result;
 result = PyString_AsString(pResult);

 result == "True" ? connected = true : connected = false;

 ...

 duration = (clock() - start) / (double)CLOCKS_PER_SEC;
 //std::cout << duration;

 }

 catch (const PyBaseExceptionObject& e)
 {
 std::cout << e.message;
 throw e;
 break;
 }
 }
 delete Connecting_thread;

return;

After the Pair function has been called and the connection has happened, the user will

be able to call the Start function, which will do the same operation as the connect and

launch a new thread (updating_thread).

The Start function will assign the thread the UpdateVariablesFromSerial function. The

latter will run detached until the call of Stop and will as the Python script to update

the variables every frame.

Between the Start and the Stop function, for the user, will be safe to ask for any

variable trough the getters methods.

34

The reading of the variable always uses the tokenization, but this time only between

the “b” and the “e” as the Python will have already discarded everything else by now.

 /*Variable that will hold the whole buffer of chars*/
 std::string result;

 /*Get the function resul and cast it from Python Object to std::string*/
 result = PyString_AsString(pResult);

 /*Temporary variables to hold the string value before converting it*/
 std::string str_pitch, str_roll, str_thumb, str_index, str_middle,
str_ring, str_pinky, str_btnA, str_btnB;

 /*Start reading whats in between the b(egin) - e(nd) tokens*/
 str_thumb = result.substr(result.find("b") + 1, result.find("e") - 1);
 fingers_value[F_THUMB] = StringToNumber(str_thumb);
 result.erase(0, result.find("e") + 1); //Clear up to where has already
been read

35

4.2 Hardware

Once all the plan of what to use in terms of hardware and once I had all the

software side working efficiently, I could solder all the components together.

Figure 11: Fritzing of the final design with labels

Once a first plan of design has been created (figure. 11), it was just a matter as to

where to put which component and how to solder it properly.

36

Logically all the components need to fit in one hand and sewed onto the textile. This

required some external help, but eventually it led to effective results.

I first soldered all the 220 Ohm resistors to each sensor leg (Figure 12).

Once this was done for all the sensors, I put them together with the glove (Figure 13)

and then wired each cable to the

Microbit and the battery.

Once all sensors were in the right place

on the glove, I

wired the battery to

the charger

module. This is

required to solder

the latter first and

then add the wires

going to the sensor

(Figure 12).

Figure 14:
Resistor soldered
to the flex sensor

Figure 12: Glove with flex in
place

Figure 13: The Glove
with both battery and
sensors attached

37

After the connection between the battery and the sensors, and between the battery and

the charger was ready, the Microbit was added. Each selected pin on the Microbit was

dedicated to analogic values from the Microbit pins map15.

When it came to get a breakout board to access all the Microbit pins, I purchased a

solderless one so that only the pins needed by the project would be soldered by

myself, while the others would not be active at all (figure 15).

Figure 15: Only 5 pins are accessed on the breakout board

Once everything has been soldered in place, the last thing to be done is to cover

everything with an external layer of textile and sew the two layers together.

15 https://blog.gbaman.info/wp-
content/uploads/2016/02/600xNxpin_mapping_0.6.png.pagespeed.ic_.NlEPaMNpEG.png

38

5. Testing & Conclusions

The statements provded when I first started the project and explained in the

introduction of this report have been fully matched. The controller works and the

whole interface as well, they will both be published soon on my GitHub and my

Instructable page. This will allow whoever wants to, to replicate and reproduce the

device, and then makes use of the library to actually build projects with it integrated.

The components chosen resulted to perfectly suit the project’s needs. The proper

functionality of the extension for the device shows the planned architecture of the

system successfully.

The project could be enriched of other readings from the built-in sensors of the

MicroBit device but having the possibility to move with hand’s tilting and to do great

things with the flexing sensors of the fingers is good enough as a starting point.

The aim of this project was to make a controller for machine-user interaction and to

wrap up the way I did it so that I (or whoever wants to) can use it in the future.

Something that has been considered in the very first few drafts of the projects

is the finger touch. This was supposedly going to be achieved through a RFID reader

placed on the palm of the hand (and the MicroBit on the top). Each finger would then

have had a RFID tag on the fingertip. The problems resulted from the first testing

sessions where quite a few: the RFID reader (due to its size) would not fit in a palm of

your hand and neither would the smallest (and reasonably affordable) RFID tag.

The battery as well wasn’t originally planned. The reasons I decided to use an external

power supply are mainly two:

-The flex sensors require it to give constant values. I first tried to only provide them

39

with the 3.3v from the MicroBit, but some of them wouldn’t return the right values.

-In a future implementation the data could be parsed wirelessly and the MicroBit

would then need to drain current off the battery instead of the USB.

The flex sensors also gave some trouble just because they are not as precise as I would

expect them to be. Plus, they are very sensible to any movement and, every now and

then, they do return some garbage value out of nothing. Also, I firstly bought one

sensor for testing only, and only afterwards I bought the other 4. For some reason the

one that I worked on before returned different values than the others.

 Anyway, they are all mapped to the same final values, no matter what the original

ones are.

Overall the project resulted to be challenging and maybe if I were to go back I

would have done something graphically appealing rather than a more mechanical

product. It is very satisfying to have the controller working and it is my intention to

also provide it a proper graphics application with 3d modelled hand and the values of

the sensors correctly mapped for a realistic finger movement in virtual world.

Future implementations are possible, some of them regard the number of readings

returned from the device and some other might even see the device reassembled with

different circuits and possibly another kind of sensor for the flex detection.

I am satisfied with the final product, but in a further implementation, it will probably

have different kinds of components. I would probably choose a wearable controller

which allows to be sewed on textile more easily and probably a different brand for the

flex sensors. For what concerns the design of the library system, that won’t ever

change, as I think I hit a good point there and I really like the way it works overall.

Developing it has been a lot of fun and I came across different new topics, which I

40

hadn’t researched before. The main satisfaction about the software side comes from

the complete originality of it, as in order to build it I did not follow any tutorial or

external guidelines.

41

7. References

-This website explains how to properly configure a development environment for the

Micro:bit runtime-

Microbit Offline Toolchains - https://lancaster-university.github.io/Microbit-

docs/offline-toolchains/

-Image of the Microbit Pins map- https://blog.gbaman.info/wp-

content/uploads/2016/02/600xNxpin_mapping_0.6.png.pagespeed.ic_.NlEPaMNpEG.

png

-To study a bit more about mbed devices and how to compile code for ARM

processor-based boards-

Mbed OS Documentation - https://os.mbed.com/docs/v5.6/introduction/index.html

-To endorse my C++ skills and for checking any issue due to synthax-

C++ tutorials point - https://www.tutorialspoint.com/cplusplus/

-To refresh programming design patterns such as singleton-

Design patterns - http://gameprogrammingpatterns.com/

-For solving issues related to Python programming this is the official documentation

website-

Python docs - https://www.Python.org/doc/

-Manus VR official Website- https://manus-vr.com/#product-anchor

42

Fairhead, H., 2016. Micro:bit IoT In C. 1st ed. England: I/O Press.

Platt, C., 2015. Make: Electronics: Learning Through Discovery. 2nd ed. England:

Maker Media.

Josuttis, N., 2012. C++ Standard Library, The: A Tutorial and Reference. 2nd ed.

England: Addison-Wesley Professional.

